Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139702

RESUMO

Wireless Body Area Networks (WBANs) are an emerging industrial technology for monitoring physiological data. These networks employ medical wearable and implanted biomedical sensors aimed at improving quality of life by providing body-oriented services through a variety of industrial sensing gadgets. The sensors collect vital data from the body and forward this information to other nodes for further services using short-range wireless communication technology. In this paper, we provide a multi-aspect review of recent advancements made in this field pertaining to cross-domain security, privacy, and trust issues. The aim is to present an overall review of WBAN research and projects based on applications, devices, and communication architecture. We examine current issues and challenges with WBAN communications and technologies, with the aim of providing insights for a future vision of remote healthcare systems. We specifically address the potential and shortcomings of various Wireless Body Area Network (WBAN) architectures and communication schemes that are proposed to maintain security, privacy, and trust within digital healthcare systems. Although current solutions and schemes aim to provide some level of security, several serious challenges remain that need to be understood and addressed. Our aim is to suggest future research directions for establishing best practices in protecting healthcare data. This includes monitoring, access control, key management, and trust management. The distinguishing feature of this survey is the combination of our review with a critical perspective on the future of WBANs.


Assuntos
Redes de Comunicação de Computadores , Qualidade de Vida , Atenção à Saúde , Privacidade , Inquéritos e Questionários , Tecnologia sem Fio
2.
Artigo em Inglês | MEDLINE | ID: mdl-37561624

RESUMO

The susceptibility of deep neural networks (DNNs) to adversarial intrusions, exemplified by adversarial examples, is well-documented. Conventional attacks implement unstructured, pixel-wise perturbations to mislead classifiers, which often results in a noticeable departure from natural samples and lacks human-perceptible interpretability. In this work, we present an adversarial attack strategy that implements fine-granularity, semantic-meaning-oriented structural perturbations. Our proposed methodology manipulates the semantic attributes of images through the use of disentangled latent codes. We engineer adversarial perturbations by manipulating either a single latent code or a combination thereof. To this end, we propose two unsupervised semantic manipulation strategies: one based on vector-disentangled representation and the other on feature map-disentangled representation, taking into consideration the complexity of the latent codes and the smoothness of the reconstructed images. Our empirical evaluations, conducted extensively on real-world image data, showcase the potency of our attacks, particularly against black-box classifiers. Furthermore, we establish the existence of a universal semantic adversarial example that is agnostic to specific images.

3.
Gene Ther ; 29(12): 655-664, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33664504

RESUMO

Plants and other organisms, but not insects or vertebrates, express the auxiliary respiratory enzyme alternative oxidase (AOX) that bypasses mitochondrial respiratory complexes III and/or IV when impaired. Persistent expression of AOX from Ciona intestinalis in mammalian models has previously been shown to be effective in alleviating some metabolic stresses produced by respiratory chain inhibition while exacerbating others. This implies that chronic AOX expression may modify or disrupt metabolic signaling processes necessary to orchestrate adaptive remodeling, suggesting that its potential therapeutic use may be confined to acute pathologies, where a single course of treatment would suffice. One possible route for administering AOX transiently is AOX-encoding nucleic acid constructs. Here we demonstrate that AOX-encoding chemically-modified RNA (cmRNA), sequence-optimized for expression in mammalian cells, was able to support AOX expression in immortalized mouse embryonic fibroblasts (iMEFs), human lung carcinoma cells (A549) and primary mouse pulmonary arterial smooth muscle cells (PASMCs). AOX protein was detectable as early as 3 h after transfection, had a half-life of ~4 days and was catalytically active, thus supporting respiration and protecting against respiratory inhibition. Our data demonstrate that AOX-encoding cmRNA optimized for use in mammalian cells represents a viable route to investigate and possibly treat mitochondrial respiratory disorders.


Assuntos
Mitocôndrias , RNA , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA/metabolismo , Células A549 , Transfecção
4.
J Control Release ; 339: 27-40, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547258

RESUMO

Currently, messenger RNA (mRNA)-based lipid nanoparticle formulations revolutionize the clinical field. Cationic polymer-based complexes (polyplexes) represent an alternative compound class for mRNA delivery. After establishing branched polyethylenimine with a succinylation degree of 10% (succPEI) as highly effective positive mRNA transfection standard, a diverse library of PEI-like peptides termed sequence-defined oligoaminoamides (OAAs) was screened for mRNA delivery. Notably, sequences, which had previously been identified as potent plasmid DNA (pDNA) or small-interfering RNA (siRNA) carriers, displayed only moderate mRNA transfection activity. A second round of screening combined the cationizable building block succinoyl tetraethylene pentamine and histidines for endosomal buffering, tyrosine tripeptides and various fatty acids for mRNA polyplex stabilization, as well as redox-sensitive units for programmed intracellular release. For the tested OAA carriers, balancing of extracellular stability, endosomal lytic activity, and intracellular release capability was found to be of utmost importance for optimum mRNA transfection efficiency. OAAs with T-shape topology containing two oleic acids as well-stabilizing fatty acids, attached via a dynamic bioreducible building block, displayed superior activity with up to 1000-fold increased transfection efficiency compared to their non-reducible analogs. In the absence of the dynamic linkage, incorporation of shorter less stabilizing fatty acids could only partly compensate for mRNA delivery. Highest GFP expression and the largest fraction of transfected cells (96%) could be detected for the bioreducible OAA with incorporated histidines and a dioleoyl motif, outperforming all other tested carriers as well as the positive control succPEI. The good in vitro performance of the dynamic lead structure was verified in vivo upon intratracheal administration of mRNA complexes in mice.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas , Animais , Lipossomos , Camundongos , Plasmídeos , Polietilenoimina , RNA Mensageiro , Transfecção
5.
Biotechnol J ; 16(1): e2000023, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33103367

RESUMO

Therapies to treat patients infected with human immunodeficiency virus (HIV) aim at preventing viral replication but fail to eliminate the virus. Although transplantation of allogeneic CCR5Δ32 homozygous stem cell grafts provided a cure for a few patients, this approach is not considered a general therapeutic strategy because of potential side effects. Conversely, gene editing to disrupt the C-C chemokine receptor type 5 (CCR5) locus, which encodes the major HIV coreceptor, has shown to confer resistance to CCR5-tropic HIV strains. Here, an engineered transcription activator-like effector nuclease (TALEN) that enables efficient CCR5 editing in hematopoietic cells is presented. After transferring TALEN-encoding mRNA into primary CD4+ T cells, up to 89% of CCR5 alleles are disrupted. Genotyping confirms the genetic stability of the CCR5-edited cells, and genome-wide off-target analyses established the absence of relevant mutagenic events. When challenging the edited T cells with CCR5-tropic HIV, protection in a dose-dependent manner is observed. Functional assessments reveal no significant differences between edited and control cells in terms of proliferation and their ability to secrete cytokines upon exogenous stimuli. In conclusion, a highly active and specific TALEN to disrupt CCR5 is successfully engineered, paving the way for its clinical application in hematopoietic stem cell grafts.


Assuntos
Infecções por HIV , HIV-1 , Receptores CCR5 , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Resistência à Doença , Infecções por HIV/genética , Infecções por HIV/prevenção & controle , HIV-1/genética , Humanos , Receptores CCR5/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/farmacologia , Efetores Semelhantes a Ativadores de Transcrição
6.
Mol Ther ; 27(4): 794-802, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30655211

RESUMO

Promising improvements in the field of transcript therapeutics have clearly enhanced the potential of mRNA as a new pillar for protein replacement therapies. Synthetic mRNAs are engineered to replace mutated mRNAs and to be immunologically inconspicuous and highly stable while maximizing protein expression. Approaches to deliver mRNA into the cellular cytoplasm safely and efficiently have been further developed so that two mRNA-based approaches replacing vascular endothelial growth factor (VEGF) and cystic fibrosis transmembrane conductance regulator (CFTR) have now made it into clinical trials. These studies bring mRNA therapeutics for protein replacement therapy closer to clinical realization. Herein, we provide an overview of preclinical and clinical developments of mRNA therapeutics for liver diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Hepatopatias/terapia , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Animais , DNA/genética , DNA/uso terapêutico , Terapia de Reposição de Enzimas/métodos , Humanos , Lipídeos/química , Camundongos , Nanopartículas/química , Polímeros/química
7.
RNA ; 25(4): 507-518, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30647100

RESUMO

Extensive research in the past decade has brought mRNA closer to the clinical realization of its therapeutic potential. One common structural feature for all cellular messenger RNAs is a poly(A) tail, which can either be brought in cotranscriptionally via the DNA template (plasmid- or PCR-based) or added to the mRNA in a post-transcriptional enzymatic process. Plasmids containing poly(A) regions recombine in E. coli, resulting in extensive shortening of the poly(A) tail. Using a segmented poly(A) approach, we could significantly reduce recombination of plasmids in E. coli without any negative effect on mRNA half-life and protein expression. This effect was independent of the coding sequence. A segmented poly(A) tail is characterized in that it consists of at least two A-containing elements, each defined as a nucleotide sequence consisting of 40-60 adenosines, separated by a spacer element of different length. Furthermore, reducing the spacer length between the poly(A) segments resulted in higher translation efficiencies compared to homogeneous poly(A) tail and reduced recombination (depending upon the choice of spacer nucleotide). Our results demonstrate the superior potential of segmented poly(A) tails compared to the conventionally used homogeneous poly(A) tails with respect to recombination of the plasmids and the resulting mRNA performance (half-life and translational efficiency).


Assuntos
Engenharia Genética/métodos , Plasmídeos/química , Poli A/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Células A549 , Animais , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Meia-Vida , Humanos , Plasmídeos/metabolismo , Poli A/metabolismo , RNA Mensageiro/metabolismo , Recombinação Genética , Transfecção
8.
Nat Nanotechnol ; 14(3): 287-297, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692673

RESUMO

Developing safe and efficient non-viral delivery systems remains a major challenge for in vivo applications of gene therapy, especially in cystic fibrosis. Unlike conventional cationic polymers or lipids, the emerging poloxamine-based copolymers display promising in vivo gene delivery capabilities. However, poloxamines are invalid for in vitro applications and their in vivo transfection efficiency is still low compared with viral vectors. Here, we show that peptides developed by modular design approaches can spontaneously form compact and monodisperse nanoparticles with poloxamines and nucleic acids via self-assembly. Both messenger RNA and plasmid DNA expression mediated by peptide-poloxamine nanoparticles are greatly boosted in vitro and in the lungs of cystic fibrosis mice with negligible toxicity. Peptide-poloxamine nanoparticles containing integrating vectors enable successful in vitro and in vivo long-term restoration of cystic fibrosis transmembrane conductance regulator deficiency with a safe integration profile. Our dataset provides a new framework for designing non-viral gene delivery systems qualified for in vivo genetic modifications.


Assuntos
Fibrose Cística/genética , Fibrose Cística/terapia , Etilenodiaminas/química , Genoma , Nanopartículas/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Nanopartículas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transgenes
9.
Tissue Eng Part A ; 25(1-2): 69-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29638193

RESUMO

The 5'-untranslated region (5'-UTR) of mRNA contains structural elements, which are recognized by cell-specific RNA-binding proteins, thereby affecting the translation of the molecule. The activation of an innate immune response upon transfection of mRNA into cells is reduced when the mRNA comprises chemically modified nucleotides, putatively by altering the secondary structure of the molecule. Such alteration in the 5'-UTR in turn may affect the functionality of mRNA. In this study, we report on the impact of seven synthetic minimalistic 5'-UTR sequences on the translation of luciferase-encoding unmodified and different chemically modified mRNAs upon transfection in cell culture and in vivo. One minimalistic 5'-UTR, consisting of 14 nucleotides combining the T7 promoter with a Kozak consensus sequence, yielded similar or even higher expression than a 37 nucleotides human alpha-globin 5'-UTR containing mRNA in HepG2 and A549 cells. Furthermore, also the kind of modified nucleotides used in in vitro transcription, affected mRNA translation when using different translation regulators (Kozak vs. translation initiator of short UTRs). The in vitro data were confirmed by bioluminescence imaging of expression in mouse livers, 6 h postintravenous injection of a lipidoid nanoparticle-formulated RNA in female Balb/c mice. Luciferase measurements from liver and spleen showed that minimal 5'-UTRs (3 and 7) were either equally effective or better than human alpha-globin 5'-UTR. These findings were confirmed with a human erythropoietin (hEPO)-encoding mRNA. Significantly, higher levels of hEPO could be quantified in supernatants from A549 cells transfected with minimal 5'-UTR7 containing RNA when compared to commonly used benchmarks 5'-UTRs. Our results demonstrate the superior potential of synthetic minimalistic 5'-UTRs for use in transcript therapies.


Assuntos
Regiões 5' não Traduzidas , Luciferases , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Células A549 , Animais , Feminino , Células Hep G2 , Humanos , Luciferases/biossíntese , Luciferases/genética , Camundongos Endogâmicos BALB C
10.
Tissue Eng Part A ; 25(1-2): 113-120, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29676227

RESUMO

Different regenerative medicine approaches for tendon healing exist. Recently, especially gene therapy gained popularity. However, potential mutagenic and immunologic effects might prevent its translation to clinical research. Chemically modified mRNA (cmRNA) might bypass these limitations of gene therapy. Therefore, the purpose of this study was to evaluate the early healing properties of Achilles tendon defects in rats treated with basic fibroblast growth factor (bFGF) cmRNA. Forty male Lewis rats were used for the study and randomly assigned to two study groups: (1) treatment with cmRNA coding for bFGF and (2) noncoding cmRNA control. Protein expression was measured using in vivo bioluminescence imaging at 24, 48, and 72 h, as well as 14 days. Animals were euthanized 2 weeks following surgery. Biomechanical, histological, and immunohistological analyses were performed with the significance level set at p < 0.05. Protein expression was evident for 3 days. At 14 days, bioluminescence imaging revealed only little protein expression. Biomechanically, tendons treated with bFGF cmRNA showed a construct stiffness closer to the healthy contralateral side when compared with the control group (p = 0.034), without any significant differences in terms of load to failure. Hematoxylin and eosin staining detected no side effects of the treatment, as signs of inflammation, or necrosis. Furthermore, it revealed the shape of the nuclei to be more oval in the bFGF group in the tendon midsubstance (p = 0.043) with a reduced cell count (p = 0.035). Immunohistological staining for type I, II, III, and IV collagen did not differ significantly between the two groups. In conclusion, this pilot study demonstrates the feasibility of a novel messenger RNA (mRNA)-based therapy for Achilles tendon defects using chemically modified mRNA coding for bFGF.


Assuntos
Tendão do Calcâneo , Fator 2 de Crescimento de Fibroblastos , Biossíntese de Proteínas , RNA Mensageiro , Traumatismos dos Tendões , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Animais , Fator 2 de Crescimento de Fibroblastos/biossíntese , Fator 2 de Crescimento de Fibroblastos/genética , Masculino , Projetos Piloto , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Ratos , Ratos Endogâmicos Lew , Traumatismos dos Tendões/genética , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/terapia
11.
Heliyon ; 4(11): e00918, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30450440

RESUMO

Direct reprogramming offers a unique approach by which to generate neural lineages for the study and treatment of neurological disorders. Our objective is to develop a clinically viable reprogramming strategy to generate neural precursor cells for the treatment of neurological disorders through cell replacement therapy. We initially developed a method for directly generating neural precursor cells (iNPs) from adult human fibroblasts by transient expression of the neural transcription factors, SOX2 and PAX6 using plasmid DNA. This study advances these findings by examining the use of chemically modified mRNA (cmRNA) for direct-to-iNP reprogramming. Chemically modified mRNA has the benefit of being extremely stable and non-immunogenic, offering a clinically suitable gene delivery system. The use of SOX2 and PAX6 cmRNA resulted in high co-transfection efficiency and cell viability compared with plasmid transfection. Neural positioning and fate determinant genes were observed throughout reprogramming with ion channel and synaptic marker genes detected during differentiation. Differentiation of cmRNA-derived iNPs generated immature GABAergic or glutamatergic neuronal phenotypes in conjunction with astrocytes. This represents the first time a cmRNA approach has been used to directly reprogram adult human fibroblasts to iNPs, potentially providing an efficient system by which to generate human neurons for both research and clinical application.

12.
Mol Ther Methods Clin Dev ; 8: 141-151, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29687033

RESUMO

New treatments to overcome the obstacles of conventional anti-cancer therapy are a permanent subject of investigation. One promising approach is the application of toxins linked to cell-specific ligands, so-called immunotoxins. Another attractive option is the employment of toxin-encoding plasmids. However, immunotoxins cause hepatoxicity, and DNA therapeutics, among other disadvantages, bear the risk of insertional mutagenesis. As an alternative, this study examined chemically modified mRNAs coding for diphtheria toxin, subtilase cytotoxin, and abrin-a for their ability to reduce cancer cell growth both in vitro and in vivo. The plant toxin abrin-a was the most promising candidate among the three tested toxins and was further investigated. Its expression was demonstrated by western blot. Experiments with firefly luciferase in reticulocyte lysates and co-transfection experiments with EGFP demonstrated the capability of abrin-a to inhibit protein synthesis. Its cytotoxic effect was quantified employing viability assays and propidium iodide staining. By studying caspase-3/7 activation, Annexin V-binding, and chromatin condensation with Hoechst33258 staining, apoptotic cell death could be confirmed. In mice, repeated intratumoral injections of complexed abrin-a mRNA resulted in a significant reduction (89%) of KB tumor size compared to a non-translatable control mRNA.

13.
Mol Ther ; 26(4): 1137-1153, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29503198

RESUMO

The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform that combines simplicity, inexpensive manufacture, and favorable safety features in the context of human applications. However, efficient correction of hematopoietic stem and progenitor cells (HSPCs) with non-viral vector systems, including SB, demands further refinement of gene delivery techniques. We set out to improve SB gene transfer into hard-to-transfect human CD34+ cells by vectorizing the SB system components in the form of minicircles that are devoid of plasmid backbone sequences and are, therefore, significantly reduced in size. As compared to conventional plasmids, delivery of the SB transposon system as minicircle DNA is ∼20 times more efficient, and it is associated with up to a 50% reduction in cellular toxicity in human CD34+ cells. Moreover, providing the SB transposase in the form of synthetic mRNA enabled us to further increase the efficacy and biosafety of stable gene delivery into hematopoietic progenitors ex vivo. Genome-wide insertion site profiling revealed a close-to-random distribution of SB transposon integrants, which is characteristically different from gammaretroviral and lentiviral integrations in HSPCs. Transplantation of gene-marked CD34+ cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution, which was most efficient when the SB transposase was supplied as mRNA and nucleofected cells were maintained for 4-8 days in culture before transplantation. Collectively, implementation of minicircle and mRNA technologies allowed us to further refine the SB transposon system in the context of HSPC gene delivery to ultimately meet clinical demands of an efficient and safe non-viral gene therapy protocol.


Assuntos
Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Sobrevivência Celular , Citometria de Fluxo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Retroviridae/genética , Transfecção , Transgenes
14.
Mol Ther Nucleic Acids ; 7: 350-365, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28624211

RESUMO

Changes in lifestyle and environmental conditions give rise to an increasing prevalence of liver and lung fibrosis, and both have a poor prognosis. Promising results have been reported for recombinant angiotensin-converting enzyme 2 (ACE2) protein administration in experimental liver and lung fibrosis. However, the full potential of ACE2 may be achieved by localized translation of a membrane-anchored form. For this purpose, we advanced the latest RNA technology for liver- and lung-targeted ACE2 translation. We demonstrated in vitro that transfection with ACE2 chemically modified messenger RNA (cmRNA) leads to robust translation of fully matured, membrane-anchored ACE2 protein. In a second step, we designed eight modified ACE2 cmRNA sequences and identified a lead sequence for in vivo application. Finally, formulation of this ACE2 cmRNA in tailor-made lipidoid nanoparticles and in lipid nanoparticles led to liver- and lung-targeted translation of significant amounts of ACE2 protein, respectively. In summary, we provide evidence that RNA transcript therapy (RTT) is a promising approach for ACE2-based treatment of liver and lung fibrosis to be tested in fibrotic disease models.

15.
J Control Release ; 249: 143-149, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28161466

RESUMO

In this study lipoplexes containing chemically modified messenger RNA (cmRNA) were incorporated into poly (lactic-co-glycolic acid) (PLGA) microspheres via water-in-oil-in-water (W/O/W) double emulsion solvent evaporation technique. The nanoparticle encapsulation by microparticle formation was optimized to achieve lipoplex release and maximum transfection efficiency in surrounding cells. It was possible to adjust characteristic features in surface topology and size of the PLGA-microspheres by varying the extent of lipoplex loading into the polymer matrix. The partial release of lipids and mRNA out of the microparticle system, their accumulation in cells and the production of encoded protein were visualized via fluorescence microscopy. These bioactive microspheres, containing cmRNA bearing lipoplexes, were developed for the incorporation of a therapeutic component into injectable calcium phosphate cements (CPC). Due to the incorporation of PLGA/lipoplex microspheres as a degradable entity, the porosity of the cement phase could additionally be adjusted. This approach of complex nanoparticle incorporation into polymer/cement composites represents a promising example for combining transcript therapy with biomechanical engineering.


Assuntos
Fosfatos de Cálcio/química , Ácido Láctico/química , Ácido Poliglicólico/análogos & derivados , RNA Mensageiro/administração & dosagem , Transfecção/métodos , Animais , Linhagem Celular , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , RNA Mensageiro/química , RNA Mensageiro/genética
16.
Stem Cells Dev ; 26(1): 25-34, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27676276

RESUMO

Bone regeneration using stem cells and growth factors has disadvantages while needing to use supraphysiological growth factors concentrations. Gene therapy has been proposed as alternative, but also has limitation. Messenger RNA (mRNA)-based transcript therapy is a novel approach that may solve plasmid DNA-based gene therapy limitations. Although much more efficient in delivering genes into the cell, mRNA is unfortunately unstable and immunogenic. However, recent reports indicated that chemical modifications of the mRNA molecule can improve stability and toxicity. In this study, we have combined biomaterials and chemically modified mRNA (cmRNA) encoding Metridia luciferase, eGFP, and bone morphogenetic protein (BMP)-2 to develop transcript-activated matrices (TAMs) for gene transfer to stem cells. BMP-2 cmRNA was produced to evaluate its feasibility in stimulating osteogenic differentiation. Fibrin gel and micro-macro biphasic calcium phosphate (MBCP) granules were used as biomaterials. A sustained release of hBMP-2 cmRNA from both biomaterials was observed during 7 days. This occurred significantly faster from the MBCP granules compared to fibrin gels (92% from MBCP and 43% from fibrin after 7 days). Stem cells cultured in hBMP-2 cmRNA/fibrin or on hBMP-2 cmRNA/MBCP were transfected and able to secrete significant amounts of hBMP-2. Furthermore, transfected cells expressed osteogenic markers in vitro. Interestingly, although both TAMs promoted gene expression at the same level, hBMP-2 cmRNA/MBCP granules induced significantly higher collagen I and osteocalcin gene expression. This matrix also induced more mineral deposition. Overall, our results demonstrated the feasibility of developing efficient TAMs for bone regeneration by combining biomaterials and cmRNAs. MBCP synergistically enhances the hBMP-2 cmRNA-induced osteogenic pathway.


Assuntos
Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 2/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Feminino , Fibrina/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , RNA Mensageiro/genética , Ratos Sprague-Dawley , Transfecção
17.
Biochem Biophys Res Commun ; 482(4): 796-801, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27888105

RESUMO

Recently, chemically modified mRNA (cmRNA) therapeutics have been the subject of extensive application-oriented research in both academia and industry as a safer alternative for gene and recombinant protein therapies. However, the lack of an efficient delivery system hinders widespread application. Here we used ∼100-nm lipoplexes and magnetic lipoplexes that can protect cmRNA from RNases and efficiently deliver it into muscle and fat tissues as well as to the endothelium of the carotid artery. Establishing magnetofection for ex vivo cmRNA delivery for the first time, we suggest this method for potential enhanced and targeted delivery of cmRNA. This study introduces optimal cmRNA complexes with high ex vivo efficiency as good candidates for further in vivo cmRNA delivery.


Assuntos
Lipídeos/química , Magnetismo/métodos , Nanopartículas de Magnetita/química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/química , Transfecção/métodos , Tecido Adiposo/metabolismo , Animais , Células Endoteliais/metabolismo , Lipossomos/química , Camundongos , Músculos/metabolismo , Células NIH 3T3 , RNA Mensageiro/genética , Ovinos , Suínos
18.
Sci Rep ; 6: 39149, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974853

RESUMO

Modified nucleotide chemistries that increase the half-life (T1/2) of transfected recombinant mRNA and the use of non-native 5'- and 3'-untranslated region (UTR) sequences that enhance protein translation are advancing the prospects of transcript therapy. To this end, a set of UTR sequences that are present in mRNAs with long cellular T1/2 were synthesized and cloned as five different recombinant sequence set combinations as upstream 5'-UTR and/or downstream 3'-UTR regions flanking a reporter gene. Initial screening in two different cell systems in vitro revealed that cytochrome b-245 alpha chain (CYBA) combinations performed the best among all other UTR combinations and were characterized in detail. The presence or absence of CYBA UTRs had no impact on the mRNA stability of transfected mRNAs, but appeared to enhance the productivity of transfected transcripts based on the measurement of mRNA and protein levels in cells. When CYBA UTRs were fused to human bone morphogenetic protein 2 (hBMP2) coding sequence, the recombinant mRNA transcripts upon transfection produced higher levels of protein as compared to control transcripts. Moreover, transfection of human adipose mesenchymal stem cells with recombinant hBMP2-CYBA UTR transcripts induced bone differentiation demonstrating the osteogenic and therapeutic potential for transcript therapy based on hybrid UTR designs.


Assuntos
NADPH Oxidases/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Células A549 , Tecido Adiposo/citologia , Animais , Área Sob a Curva , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Genes Reporter , Meia-Vida , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Células NIH 3T3 , Osteogênese , Biossíntese de Proteínas , Estabilidade de RNA , Curva ROC , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Transfecção
19.
J Control Release ; 239: 137-48, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27586186

RESUMO

Transcript therapies using chemically modified messenger RNAs (cmRNAs) are emerging as safe and promising alternatives for gene and recombinant protein therapies. However, their applications have been limited due to transient translation and relatively low stability of cmRNAs compared to DNA. Here we show that vacuum-dried cmRNA-loaded collagen sponges, termed transcript activated matrices (TAMs), can serve as depots for sustained delivery of cmRNA. TAMs provide steady state protein production for up to six days, and substantial residual expression until 11days post transfection. Another advantage of this technology was nearly 100% transfection efficiency as well as low toxicity in vitro. TAMs were stable for at least 6months at room temperature. Human BMP-2-encoding TAMs induced osteogenic differentiation of MC3T3-E1 cells in vitro and bone regeneration in a non-critical rat femoral bone defect model in vivo. In summary, TAMs are a promising tool for bone regeneration and potentially also for other applications in regenerative medicine and tissue engineering.


Assuntos
Regeneração Óssea/genética , Colágeno/administração & dosagem , Técnicas de Transferência de Genes , Terapia Genética/métodos , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Células A549 , Animais , Regeneração Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Colágeno/química , Colágeno/metabolismo , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Células NIH 3T3 , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Angew Chem Int Ed Engl ; 55(33): 9591-5, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376704

RESUMO

The development of chemically modified mRNA holds great promise as a new class of biologic therapeutics. However, the intracellular delivery and endosomal escape of mRNA encapsulated in nanoparticles has not been systematically investigated. Here, we synthesized a diverse set of cationic polymers and lipids from a series of oligoalkylamines and subsequently characterized their mRNA delivery capability. Notably, a structure with an alternating alkyl chain length between amines showed the highest transfection efficiency, which was linked to a high buffering capacity in a narrow range of pH 6.2 to 6.5. Variation in only one methylene group resulted in enhanced mRNA delivery to both the murine liver as well as porcine lungs after systemic or aerosol administration, respectively. These findings reveal a novel fundamental structure-activity relationship for the delivery of mRNA that is independent of the class of mRNA carrier and define a promising new path of exploration in the field of mRNA therapeutics.


Assuntos
Aminas/química , Lipídeos/química , Polímeros/química , RNA Mensageiro/genética , Animais , Cátions/química , Camundongos , Células NIH 3T3 , Relação Estrutura-Atividade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...